Search results

1 – 5 of 5
Article
Publication date: 1 June 1999

J. Abouchabaka, R. Aboulaïch, A. Nachaoui and A. Souissi

Electrical potentials in a junction field transistor can be calculated using a simplified model based on a complete depletion assumption. This gives rise to a free boundary…

Abstract

Electrical potentials in a junction field transistor can be calculated using a simplified model based on a complete depletion assumption. This gives rise to a free boundary problem. We show here how we can approximate this problem with a quasi‐variational inequality technique and the shape optimization method. A detailed analysis of these methods is presented. Using some numerical experiments we compare our results with the solution of the discrete drift‐diffusion system, accomplished with a Gummel‐like algorithm. The numerical results suggest that the methods proposed here work successfully and that the shape optimization technique provides a reasonably free boundary without excessive iterations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 February 2022

Arezoo Gazori-Nishabori, Kaveh Khalili-Damghani and Ashkan Hafezalkotob

A Nash bargaining game data envelopment analysis (NBG-DEA) model is proposed to measure the efficiency of dynamic multi-period network structures. This paper aims to propose…

Abstract

Purpose

A Nash bargaining game data envelopment analysis (NBG-DEA) model is proposed to measure the efficiency of dynamic multi-period network structures. This paper aims to propose NBG-DEA model to measure the performance of decision-making units with complicated network structures.

Design/methodology/approach

As the proposed NBG-DEA model is a non-linear mathematical programming, finding its global optimum solution is hard. Therefore, meta-heuristic algorithms are used to solve non-linear optimization problems. Fortunately, the NBG-DEA model optimizes the well-formed problem, so that it can be solved by different non-linear methods including meta-heuristic algorithms. Hence, a meta-heuristic algorithm, called particle swarm optimization (PSO) is proposed to solve the NBG-DEA model in this paper. The case study is Industrial Management Institute (IMI), which is a leading organization in providing consulting management, publication and educational services in Iran. The sub-processes of IMI are considered as players where their pay-off is defined as the efficiency of sub-processes. The network structure of IMI is studied during multiple periods.

Findings

The proposed NBG-DEA model is applied to measure the efficiency scores in the IMI case study. The solution found by the PSO algorithm, which is implemented in MATLAB software, is compared with that generated by a classic non-linear method called gradient descent implemented in LINGO software.

Originality/value

The experiments proved that suitable and feasible solutions could be found by solving the NBG-DEA model and shows that PSO algorithm solves this model in reasonable central process unit time.

Details

Journal of Modelling in Management, vol. 18 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 1 March 1992

Abdeljalil NACHAOUI and Nabil R. NASSIF

This paper is concerned with the analysis of global uniqueness of the solution to the drift—diffusion models, for stationary flow of charges carriers in semiconductor devices. Two…

Abstract

This paper is concerned with the analysis of global uniqueness of the solution to the drift—diffusion models, for stationary flow of charges carriers in semiconductor devices. Two uniqueness cases are found. Firstly, small applied voltages with a proof introducing new ‘quasi‐monotony condition’ verified for solutions in W and not necessarily in H. Secondly, large applied voltage to the semiconductor with small 2D domain, and not large doping functions. These uniqueness cases allow the construction of algorithms that yield converging sequences of solutions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 11 no. 3
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 26 May 2020

Haolong Chen, Zhibo Du, Xiang Li, Huanlin Zhou and Zhanli Liu

The purpose of this paper is to develop a transform method and a deep learning model to identify the inner surface shape based on the measurement temperature at the outer boundary…

Abstract

Purpose

The purpose of this paper is to develop a transform method and a deep learning model to identify the inner surface shape based on the measurement temperature at the outer boundary of the pipe.

Design/methodology/approach

The training process is assisted by the finite element method (FEM) simulation which solves the direct problem for the data preparation. To avoid re-meshing the domain when the inner surface shape varies, a new transform method is proposed to transform the shape identification problem into the effective thermal conductivity identification problem. The deep learning model is established to set up the relationship between the measurement temperature and the effective thermal conductivity. Then the unknown geometry shape is acquired by the mapping between the inner shape and the effective thermal conductivity through the inverse transform method.

Findings

The new method is successfully applied to identify the internal boundary of a pipe with eccentric circle, ellipse and nephroid inner geometries. The results show that as the measurement points increased and the measurement error decreased, the results became more accurate. The position of the measurement point and mesh density of the FEM model have less effect on the results.

Originality/value

The deep learning model and the transform method are developed to identify the pipe inner surface shape. There is no need to re-mesh the domain during the computation progress. The results show that the proposed method is a fast and an accurate tool for identifying the pipe inner surface.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1990

Nayla HAYECK, Abdeljalil NACHAOUI and Nabil R. NASSIF

Using the topological degree of Leray‐Shauder, and Grisvard's results for elliptic equations with mixed boundary conditions, we extend Mock's results for the steady‐state Van…

Abstract

Using the topological degree of Leray‐Shauder, and Grisvard's results for elliptic equations with mixed boundary conditions, we extend Mock's results for the steady‐state Van Roosbroeck system, with the change from Neuman to Dirichlet boundary conditions occuring at a flat angle. Similar results are obtained for continuity equations that include a general recombination rate.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 9 no. 4
Type: Research Article
ISSN: 0332-1649

1 – 5 of 5